Economic additive manufacturing of high-performance plastic parts

T. Sauerstein, S. Scholz, M. Kausch, S. Grießbach

Introduction of Fraunhofer Kunststoffzentrum Oberlausitz

Selected R&D projects: Cost efficiency in additive manufacturing

Economical LS-Materials with magnificent material properties

Fraunhofer Kunststoffzentrum Oberlausitz

- Part of Fraunhofer Institute for Machine Tools and Forming Technology IWU
- Interdisciplinary research team of 15 employees in the fields of plastics, textile, mechanical and production engineering
- Opening of the new technology center on the campus of HSZG in Zittau
- Mission: Applied R&D for industry in the triangle region D / CZ / PL

Fields of research

- Development of <u>new applications</u> using additive manufacturing
- Increasing efficiency in additive manufacturing through new production concepts
- Development of <u>modified plastics</u> for additive manufacturing to open up new applications
- Research in <u>large-scale industrial</u> <u>technologies</u> for thermoset and thermoplastic fiber composites
- Design and FEM calculation of complex and highly loaded <u>lightweight composite parts</u>
- Manufacturing prototypes made of plastics and composites

Hybrid automotive battery carrier in FRP lightweight design

Research facilities

Additive manufacturing

- FDM unit, Fortus 900mc by Stratasys
- LS unit, sPro 60 by 3D-Systems
- Robot supported FDM unit
- Blasting cubicle

Composite technologies

- Hot press with preheating station
- High-pressure RTM unit
- Plastics extruder
- Handling robot

Testing and analysis

- Static & dynamic testing unit with climatic chamber
- 3D digital scanner (mobile device by GOM)
- Digital microscope with
 3D surface scanner
- Further test labs at HSZG

Selected projects: Efficiency in additive manufacturing

Efficient tooling concepts for the paper pulp process

- Target/ Innovation
 - Additive manufacturing of function integrated paper pulp molds
 - Increased dimensional stability and reduction of process times
- Research focus
 - Process concepts and development of mold segments and plant engineering
 - Experimental verification of the method and mold subsystems
 - Laboratory production unit for precision molded pulp demonstrators
- Application / Industrial sector
 - Packaging, transport, floristry

Pulp molding tool (front)

Pulp molding tool (rear)

Pulp molded part

Selected projects: Efficiency in additive manufacturing

Flame-retardant LS material by means of functionalized glass foam

- Target/Innovation
 - Cost-efficient LS powder with flame-retardant properties
 - Higher strength and stiffness due to reinforcements
 - Halogen- and phosphate-free
- Research focus
 - Development of mixing concepts under consideration of fire resistance
 - Adjusting process parameters for effective manufacturing of functional and flame-resistant plastic parts
 - Production of glass foam and comminution to powder of different fractions
 - Application / Industrial sector
 - Aviation, railway, automotive, electronics, exhibition construction

3D-printed air duct

Selected projects: Efficiency in additive manufacturing

Development of a flexible pilot plant for the efficient additive manufacturing of large-sized plastic parts

Targets / Innovation

- Flexible production of complex, largesized plastic parts
- Increase of the production speed with help of variable printheads
- Using the six axis for the part production on existing and non-planar surfaces
- High variance of process parameters
- Production of hybrid structurs with different plastics
- Innovative tempering concepts for shrinkage free manufacturing

FDM pilot plant

Process Lasersintering

[1zu1 Prototypen GmbH & Co KG]

Material efficiency

- Significant amount of used powder can not be used again due to aging → DISPOSAL
- A machine working
 Ø 100 h/ week causes up to
 1.800 kg waste
 → over 52 T€ per year
 unused potential
- Refurbished powder can be re-used to reduce disposal completely
 - → Higher Efficiency
 - → Reducing waste
 - → Creating a closed material loop

Example: Vanguard / sPro 60 with Standard PA12-Powder

Material efficiency

- Material is processed mechanically
- Higher efficiency
- Less waste environmental sustainability
- Improved or even completly new mechanically properties

Comparison virgin – refurbished powder

Comparison virgin – refurbished powder

Material improvement

PE & PP are most used plastics

Mechanical properties molded PP/PE compared with sintered PA-Materials

Polypropylene (PP)

	Density	Tensile strength	Young Modulus
Units	g/cm³	N/mm² (psi)	N/mm² (ksi)
Value	0,90 – 0,91	20 – 40 (2,900-5,800)	800 – 1,600 (115-230)

Polyethylene (PE-HD)

	Density	Tensile strength	Young Modulus
Units	g/cm³	N/mm² (psi)	N/mm² (ksi)
Value	0,94 - 0,97	15 – 30 (2,200-4,400)	600 – 1,400 (90-200)

Polyethylene (PE-LD)

	Density	Tensile strength	Young Modulus
Units	g/cm³	N/mm² (psi)	N/mm² (ksi)
Value	0,91 - 0,93	10 – 25 (1,500-3,500)	200 - 600 (30-90)

DuraForm EX (PA 11)

	Density	Tensile strength	Young Modulus
Units	g/cm³	N/mm² (psi)	N/mm² (ksi)
Value (3D)	1,01	48 (6,961)	1,517 (220)
Value (own)	1,00-1,04	48-52 (6,900-7,500)	1.500 – 1600 (220-235)

DuraForm PA (PA 12)

	Densit	Tensile	Young
	y	strength	Modulus
Units	g/cm³	N/mm² (psi)	N/mm² (ksi)
Value (3D)	1,00	43 (6,237)	1,586 (230)
Value	0,95 –	45-52	1,600 – 1,900
(own)	1,02	(6,500-7,500)	(230-280)

Working with refurbished PA 11

Available on any DTM/3D (HiQ) machines

Either:

Getting 100% PA11-performance

OR:

By using refined PA11 material Young Modulus can be adjusted with even good Values for EatB (>20%)

	Density	Tensile strength	Young Modulus
Units	g/cm³	N/mm² (psi)	N/mm² (ksi)
PP-like	0.96 –	30 – 35	1,000 – 1,200
	0.99	(4,300 – 5,100)	(145 –175)
PE-like	0.90 –	20 – 25	600 – 800
	0.93	(2,900 – 3,600)	(90 –120)

Conclusion

- Significant higher efficiency by using refined LSpowder
- Improved mechanical properties
- Less influences by variation of raw powder higher repeatability
- Less fairy frost due to less virgin powder less service – less down time
- Enlarging the market through a wide range of mechanical properties

Thank you for your attention!

